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Crystallization and phase separation in nonadditive binary hard-sphere mixtures
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We calculate for the first time the full phase diagram of an asymmmedmnadditivehard-sphere mixture. The
nonadditivity strongly affects the crystallization and the fluid-fluid phase separation. The global topology of the
phase diagram is controlled by an effective size ratip, while the fluid-solid coexistence scales with the
depth of the effective potential well.

PACS numbgs): 61.20.Gy, 64.70.Dv, 82.70.Dd

Entropically driven phase transitions have received muchivity is provided by the caser,,=0, A>0, which is the
attention lately because of their direct relevance to the obfamiliar Asakura-Oosawa modEg2] of colloid-polymer mix-
served phase-behavior of colloidal suspensidisTheoret- tures, allowing for full interpenetrability of polymer coils.
ical work has focused on the asymmetric binary hard-spherghis system is predicted to exhibit phase separation into di-
(HS) system, a deceptively simple mixture of large and smallute and concentrated colloid fluid phases for large enaugh
particles, which exhibits an interesting competition betweer7,8], in good agreement with experimental findirl§$. The
demixing into dilute and concentrated suspensions of largeresent work is concerned with the case of small positive
particles, driven by the familiar osmotic depletion effEz]}, nonadditivity for HS mixtures with small size-ratios which
and freezing into an ordered crystalline phase. Recent Monteould lead to a metastable demixing transition in the addi-
Carlo(MC) simulationd 3] of binary colloidal dispersions of tive limit, A=0. A>0 will obviously favor demixing since
spherical particles with additive diametess and o,, and  phases involving a majority of particles of the same species
size-ratioy=o0,/0,<0.2, have convincingly demonstrated will allow a more efficient packing10].
that the demixing transition conjectured earliét is always To examine the possibility of a fluid-fluid phase separa-
preempted by a direct freezing of a low concentration disortion for A>0, it seems natural to develop a perturbation
dered(“fluid” ) phase into an fcc crystal of large particles. It theory expansion in powers af around a reference mixture
was argued elsewhe(&] that a small degree of nonadditiv- of identical composition, involving additive HS. The free
ity of the diametero;,, determining the distance of closest energy per unit volumé,=F,/V, of the latter is rather ac-
approach between large and small particles, might drive theurately given by the semi-empirical equation of state pro-
demixing transition from metastable to stable. This view hagosed by Mansootét al.[11], which improves on the com-
been supported by recent MC simulatidisd, which show  pressibility equation of state derived from the analytic
that nonadditivity significantly lowers the packing fraction at solution of the Percus-YeviclPY) equationg12]. Note that
the critical point of the fluid-fluid coexistence curve. How- neither predicts a spinodal instability for any size-ratio or
ever, to reach firm conclusions concerning the observabilitcomposition, as characterized by a vanishing determinant of
of a fluid-fluid demixing transition, the effect of nonadditiv- the stability matrixM = |c72f0/anaan,3|, wheren,=N,/V is
ity on the freezing transition must also be considered explicthe number density of spheres. However for fixed packing
itly, in order to map out a complete phase diagram. This igraction, they predict thaM approaches zero ag® [12],
precisely the objective of this Rapid Communication, wheresuggesting that for larger and larger size-asymmetry, smaller
the important influence of nonadditivity on the global phaseand smaller perturbations to the purely additive case can
behavior of highly asymmetric hard sphere mixtures isdrive the stability matrix negative. The additive case is in a
evaluated within a systematic statistical mechanical perturbasense “marginal” to phase-separation, which explains why
tion treatment. Even a small nonadditivity is shown to have ahe very existence of such a separation is so sensitive to the
large effect on the interpretation of the phase behavior, angarticular approximations uséé].
experiments on sterically or charge-stabilized binary “HS” A direct application of standard thermodynamic perturba-
colloids are shown to generically exhibit nonadditive behavtion theory [13] to the unlike pair potential:v(ﬁ)(r)
ior. _ =v{9D(r/(1+\A)), wherex=0 and 1 correspond, respec-

Consider a binary system of HS with distances of closes{ivew, to the additive reference system with diamemé%),
approacho,g(1<a,<2), such thatoy; =01, 02;=02,  and'to the nonadditive mixture of interest, leads to the first
and order correction to the free energy,

0)3,(0 0
012:%(0117L 02 (1+A), (1) B(F—Fo)/V=47An;n,0{93gD(o(D). 2
In Eq. (2), 9g{9(c1) is the contact value of the unlike pair
where the nonadditivity paramet&rcan be positive or nega- distribution function of the reference mixture taken from the
tive. The caseA=0 corresponds to additive HS, and hasanalytic solution of the PY equation for an additive binary
been widely studied with the usual techniques of the statisHS mixture[12]. The fluid-fluid spinodal curves resulting
tical mechanics of fluids. An extreme example of nonaddi-from this two-component perturbation theory using both the
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_ FIG. 1. ng‘?r cunves ave ‘;'”id'ﬂr‘]"d .Spingda's.t‘?gc."z'hA ~ FIG. 2. Fluid-fluid spinodalgdashed linesand fluid-solid bin-
=0.033 as obtained from the four theories described in the teXtodaIs(soIid lines for y=0.2, andA=0.02, 0.033, 0.05, 0.1, and

Mansoori reffrenceC()), PY reference (), Barboy-Gelbart ¢), () 55 from top to bottor). The long-dashed curve is the fluid-solid
and BPGG (*). The lowethree sets of curves compare the fluid- 45| for A= 0. Inset: effective potentials of E¢3) for y=0.2,
solid binodals calculated by first order perturbation theory in then;=0.3,A=O (solid line) and A =0.05 (dashed ling

potential of Eq.(3) (dashed lingswith MC results[3] (solid lines
for the additive caseA =0. From top to bottomy=0.2, 0.1, and

0.05 respectively. potentials between the large spheres which are determined by

the free energyor grand potential of the inhomogeneous
fluid of small spheres in the “external field” of the larger
n[&articles. Thebasic philosophyehind effective potentials in
complex fluids is that théconsiderablginitial effort spent
Ii/eriving accurate effective potentials is recouped when they
re used as input into the well developed machinery of liquid
state theory[13]. In the case of colloid-polymer mixtures,
his approach leads to the Asakura-Oosawa effective pair po-
ential between large spherfkd], and for additive HS mix-
tures the effective pair potential has recently been extended
o . to include excluded volume correlations between small
lently 1.,). In shar_p contrast to the additive case where d'f'spheres[ZO,S]. The procedure used in these references may
ferent theories yield dissimilar resulfS], all three ap- o ganeralized to derive the following effective pair potential

proaches yield similar results for the spinodal curves, etween large spheres in a nonadditive HS mixture
Moreover, they are consistent with results from numericalb '

solutions of the Ballone-Pastore-Galli-Gazzi{BPGG) inte- BVei(r) = r<a,
gral equation 15], at least for low values of,. As expected,

the small correction due to the nonadditivity triggers a phase- ;

separation which is absent in the two additive reference Sys',BVeﬁ(r): —375(1+ Yert) {h()2+ 75[4 h(r)2—3yh(r)]

Mansoori[11] and PY[12] referenceFy's are compared in
Fig. 1 to an approximate series expansion due to Barboy a
Gelbart[14] for a size-ratioy=0.2 andA =0.033. Note that
the results are plotted for a semigrand ensemble: the bina
mixture is in osmotic equilibrium with a reservoir of small
spheres which fixes their chemical potentigl;, the thermo-
dynamic variables controlling the phase behavior are th
packing fractions;;= wnlafle, of the large spheres in the
mixture andz; of small spheres in the reservdor equiva-

tems A=0). The demixing transition, which is marginal for 2y°

additive HS’s[4], is strongly enhanced by a modest degree

of nonadditivity. Moreover, increasingy shifts the demixing +(75)?[10n(r)?—12yh(r)1};

transition to lower and lower packing fractiog,, of small

spheres, as shown in Fig. 2. o1sSr<oy(l+yen), (3

The above two-component perturbation scheme cannot be
adapted to investigate the freezing of nonadditive HS mixwhere the effective size-ratio is
tures, mainly because the crystal phase of the additive refer-
ence system is poorly understood for small size-rafiddS Yer=y +A+AYy, (4)
alloys form substitutionally disordered crystals fpr0.85
[16], and interesting superlattice structures yo£0.6[17],  While the functionh(r)=(1+Yen) —r/o. The term linear in
but the structure for smaller values pfisayy=<0.3) is not 7> is the purely attractive Derjaguin form of the Asakura-
well understood, although it has been conjectured that th@osawa potential, with the effective size-rafig;, while the
large spheres might form an FCC lattice, permeated by &igher order terms describe the partially repulsive effects of
fluid of small spheres, at least for sufficiently smpl[18].  the correlation-induced layering of the small spheres around
To avoid these difficulties, one may resort to an effectivethe large spheres. As shown in the inset of Fig. 2, increasing
one-component description, by integrating out the degrees af at fixed 7, deepens the attractive well, while the
freedom of the small spheres for any given configuration ofcorrelation-induced repulsive barrier remains roughly the
large spheres. This procedure leads to effective interactiosame.
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7 @ with well-depth at contact, and is largely independent of the
" BV (1) shape or rangécharacterized by.;) of the effective pair
61 NJam0224 P N potential between the larger spheres. This behavior contrasts

\\\\\‘:6;; o sharply with the fluid-fluid coexistence curves, which are
Sr s ST very sensitive to the range and shape of the effective poten-

——— ’

\*\Vf°-26,/” Be 1 iz 1a s tial. Note that the fluid-fluid demixing transition becomes
r

stable fory.=0.4, which is comparable to the results of
direct simulations of the Asakura-Oosawa model for colloid-
polymer mixtureq21].

The possibility of phase-separation in binary hard-sphere
mixtures inspired a series of experiments on hard-sphere-like
colloids[22]. The hard-sphere repulsion is achieved by steric
stabilization, with a repulsive outer brush of co-polymer, or
else the colloids are stabilized by repulsive electrostatic in-
0 o1 02 03 04 05 06 07 teractions, with enough salt added to obtain a very short

n, screening length. Interactions between charge-stabilized bi-
nary colloids are well described by the DLVO potential

FIG. 3. Same as Fig. 2 but with tlyeaxis rescaled with respect [2324. For sterically stabilized colloids, the interaction
to the well-depth at contact of E@B). Inset: two typical effective  petween two spheres can be estimated by combining the
potentials from Eq(3) for yes=0.2, andy.;=0.44; both resultin  jnteraction between two flat brush-covered surfaces, which
very similar liquidus lines. is well described by the Alexander—de Gennes theory

[23], with the Derjaguin approximation, which results in:

The effective interaction for> o, is treated as a pertur- Vo (r —o)=yVy(r—o11), and Vi(r—o)=[2y/(1
bation of the one-component HS reference system, and star=y) |V11(r —o11), whereV ,4(r — o,p) is the interaction po-
dard first order perturbation theof{3,7] is applied to cal- tential between the brushes of speciesind 8. The repul-
culate the free energy and determine the fluid-solid phassive interaction is smaller between smaller particles because
coexistence. The predictions of this effective one-componerthe brush surface overlap area is smaller as a function of
perturbation theory are compared in Fig. 1 to MC data fordistancer. The three effective hard-sphere diameters can be
the additive A =0) case(which in turn compares well with estimated by the diameter at which the interaction is a few
full two-component MC simulation§3]); the agreement is timeskgT, and then used to determine the nonadditivity. For
seen to be good, thus lending confidence to the extension doth sterically and electrostatically stabilized binary colloi-
the theory to the non-additive case, for which no MC datadal mixtures this results in:
are available. Interestingly this success is not mirrored for 5
the fluid-fluid transition: the one-component perturbation 2\/)—/ |
theory predicts a critical point at much higher valuesrygf 1+y PO ®)
than was found in the simulations, demonstrating that care 12

must be taken when applying ideas culled from the field ofyherel is the decay length of the brugh3], or the Debye
simple fluids to the effective potentials arising from complexXscreening length of the DLVO interaction. To first order, the

fluids. On the other hand, the two-component perturbatiomonadditivity depends neither on the prefactors in the inter-
theory embodied in Eq2) turns out to be much more accu-

rate and has been used throughout to determine the demixing 0.5 .
of nonadditive HS’s into two fluid phases.

Results for 0.0& A<0.25 are shown in Fig. 2. Both the \
fluid-fluid spinodal and the liquidus line of the freezing tran- 0.4 - N 1
sition are seen to shift to lowey, asA increases, so that the
fluid-fluid coexistence curve remains metastable upAto
=0.2, at which stage the critical point becomes stable. The
two-component perturbation theory cannot be trusted for sig-
nificantly larger values oA, because of its first order nature.
On the other hand, nonadditivity is expected to remain rather
small for sterically or electrostatically stabilized colloids, so
that the present calculations imply that it may be unlikely to
observe fluid-fluid phase coexistence in asymmetric colloidal
mixtures.

However, the calculations lead to another unexpected pre-
diction. If the phase diagrams in Fig. 2 are rescaled, by
choosing the reduced well depth at contget= BV x(0o1),
rather thanz;, as the thermodynamic variable along he  FiG. 4. Fluid-solid binodals foy=0.1075,A=0 (solid lineg
axis, the fluid-solid |iC]UidUS curves for all values Af fall andA = —0.01 (dash-dotted linesplotted for absolutep, (not 77r2)

practically on top of each other. This “quasiuniversal” be- to compare to the liquidus line from Imhof and Dhd@g] for the
havior is shown in Fig. 3: the fluid-solid liquidus line scales samey (dashed ling

Be

[
A=—=In

+0
0
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actions, nor on exactly how many timkgT is chosen as the tive nonadditivity has a relatively large effect on the phase-
hard-sphere criterion; only the “softness” of the potential diagram, raising the liquidus line to higher effective values
enters. Since the logarithmic factor in EG) is negative, of #,. No fluid-fluid demixing is expected fak <O0.

sterically or electrostatically stabilized colloidal mixtures |n conclusion then, we have demonstrated that nonaddi-
will manifestnegativenonadditivity. For example, the popu- tivity has an important effect on the phase-diagram of asym-
lar model colloids made of polymethylmethylacrylate metric binary hard-sphere mixtures, affecting both the fluid-
(PMMA) cores are stabilized by a poly-12-hydroxysteric fiyig and the fluid-solid lines. The fluid-solid liquidus lines
acid (PHS brush, typically 16-12 nm wide, withl~3  ghow a near-universal behavior, and experimental hard-

—4 nm[23], a number confirmed by direct measurementssyhere_jike colloidal dispersions are expected never to sepa-
with a surface-force apparat{®5]. Thus a mixture with the rate into two fluid phases.

larger species at 400 nm and the smaller at 40 ym@.1)

will have a negative nonadditivity of abowt=—0.01; i.e., We would like to thank R. Evans, M. Dijkstra, M. Child,
the cross-diametetr;, is 1% less than the additive cross- Y. Mao, P. Warren, W. Poon, P. Pusey, M. Cates, and D.
diameters () . Frenkel for helpful discussions. A.A.L. was supported by the

Figure 4 demonstrates that even a small amount of negd&C through Grant No. EBRFMBICT972464.
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