
RAPID COMMUNICATIONS

PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Crystallization and phase separation in nonadditive binary hard-sphere mixtures
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~Received 5 November 1999!

We calculate for the first time the full phase diagram of an asymmetricnonadditivehard-sphere mixture. The
nonadditivity strongly affects the crystallization and the fluid-fluid phase separation. The global topology of the
phase diagram is controlled by an effective size ratioyeff , while the fluid-solid coexistence scales with the
depth of the effective potential well.

PACS number~s!: 61.20.Gy, 64.70.Dv, 82.70.Dd
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Entropically driven phase transitions have received m
attention lately because of their direct relevance to the
served phase-behavior of colloidal suspensions@1#. Theoret-
ical work has focused on the asymmetric binary hard-sph
~HS! system, a deceptively simple mixture of large and sm
particles, which exhibits an interesting competition betwe
demixing into dilute and concentrated suspensions of la
particles, driven by the familiar osmotic depletion effect@2#,
and freezing into an ordered crystalline phase. Recent Mo
Carlo ~MC! simulations@3# of binary colloidal dispersions o
spherical particles with additive diameterss1 and s2, and
size-ratioy5s2 /s1<0.2, have convincingly demonstrate
that the demixing transition conjectured earlier@4# is always
preempted by a direct freezing of a low concentration dis
dered~‘‘fluid’’ ! phase into an fcc crystal of large particles.
was argued elsewhere@5# that a small degree of nonadditiv
ity of the diameters12, determining the distance of close
approach between large and small particles, might drive
demixing transition from metastable to stable. This view h
been supported by recent MC simulations@6#, which show
that nonadditivity significantly lowers the packing fraction
the critical point of the fluid-fluid coexistence curve. How
ever, to reach firm conclusions concerning the observab
of a fluid-fluid demixing transition, the effect of nonadditiv
ity on the freezing transition must also be considered exp
itly, in order to map out a complete phase diagram. This
precisely the objective of this Rapid Communication, whe
the important influence of nonadditivity on the global pha
behavior of highly asymmetric hard sphere mixtures
evaluated within a systematic statistical mechanical pertu
tion treatment. Even a small nonadditivity is shown to hav
large effect on the interpretation of the phase behavior,
experiments on sterically or charge-stabilized binary ‘‘HS
colloids are shown to generically exhibit nonadditive beh
ior.

Consider a binary system of HS with distances of clos
approachsab(1<a,b<2), such thats115s1 , s225s2,
and

s125
1

2
~s111s22!~11D!, ~1!

where the nonadditivity parameterD can be positive or nega
tive. The caseD50 corresponds to additive HS, and h
been widely studied with the usual techniques of the sta
tical mechanics of fluids. An extreme example of nonad
PRE 611063-651X/2000/61~2!/1028~4!/$15.00
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tivity is provided by the cases2250, D.0, which is the
familiar Asakura-Oosawa model@2# of colloid-polymer mix-
tures, allowing for full interpenetrability of polymer coils
This system is predicted to exhibit phase separation into
lute and concentrated colloid fluid phases for large enougD
@7,8#, in good agreement with experimental findings@9#. The
present work is concerned with the case of small posit
nonadditivity for HS mixtures with small size-ratios whic
would lead to a metastable demixing transition in the ad
tive limit, D50. D.0 will obviously favor demixing since
phases involving a majority of particles of the same spec
will allow a more efficient packing@10#.

To examine the possibility of a fluid-fluid phase sepa
tion for D.0, it seems natural to develop a perturbati
theory expansion in powers ofD around a reference mixtur
of identical composition, involving additive HS. The fre
energy per unit volumef 05F0 /V, of the latter is rather ac-
curately given by the semi-empirical equation of state p
posed by Mansooriet al. @11#, which improves on the com
pressibility equation of state derived from the analy
solution of the Percus-Yevick~PY! equations@12#. Note that
neither predicts a spinodal instability for any size-ratio
composition, as characterized by a vanishing determinan
the stability matrixM5u]2f 0 /]na]nbu, wherena5Na /V is
the number density ofa spheres. However for fixed packin
fraction, they predict thatM approaches zero asy3 @12#,
suggesting that for larger and larger size-asymmetry, sma
and smaller perturbations to the purely additive case
drive the stability matrix negative. The additive case is in
sense ‘‘marginal’’ to phase-separation, which explains w
the very existence of such a separation is so sensitive to
particular approximations used@4#.

A direct application of standard thermodynamic perturb
tion theory @13# to the unlike pair potential:v12

(l)(r )
5v12

(0)
„r /(11lD)…, wherel50 and 1 correspond, respec

tively, to the additive reference system with diameters12
(0) ,

and to the nonadditive mixture of interest, leads to the fi
order correction to the free energy,

b~F2F0!/V54pDn1n2s12
(0)3g12

(0)~s12
(0)!. ~2!

In Eq. ~2!, g12
(0)(s12

(0)) is the contact value of the unlike pa
distribution function of the reference mixture taken from t
analytic solution of the PY equation for an additive bina
HS mixture @12#. The fluid-fluid spinodal curves resultin
from this two-component perturbation theory using both
R1028 ©2000 The American Physical Society
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Mansoori@11# and PY@12# referenceF0’s are compared in
Fig. 1 to an approximate series expansion due to Barboy
Gelbart@14# for a size-ratioy50.2 andD50.033. Note that
the results are plotted for a semigrand ensemble: the bi
mixture is in osmotic equilibrium with a reservoir of sma
spheres which fixes their chemical potentialm2; the thermo-
dynamic variables controlling the phase behavior are
packing fractions,h15pn1s1

3/6, of the large spheres in th
mixture andh2

r of small spheres in the reservoir~or equiva-
lently m2). In sharp contrast to the additive case where d
ferent theories yield dissimilar results@3#, all three ap-
proaches yield similar results for the spinodal curv
Moreover, they are consistent with results from numeri
solutions of the Ballone-Pastore-Galli-Gazzillo~BPGG! inte-
gral equation@15#, at least for low values ofh1. As expected,
the small correction due to the nonadditivity triggers a pha
separation which is absent in the two additive reference
tems (D50). The demixing transition, which is marginal fo
additive HS’s@4#, is strongly enhanced by a modest degr
of nonadditivity. Moreover, increasingD shifts the demixing
transition to lower and lower packing fractionh2

r , of small
spheres, as shown in Fig. 2.

The above two-component perturbation scheme canno
adapted to investigate the freezing of nonadditive HS m
tures, mainly because the crystal phase of the additive re
ence system is poorly understood for small size-ratiosy. HS
alloys form substitutionally disordered crystals fory*0.85
@16#, and interesting superlattice structures fory&0.6 @17#,
but the structure for smaller values ofy ~say y&0.3) is not
well understood, although it has been conjectured that
large spheres might form an FCC lattice, permeated b
fluid of small spheres, at least for sufficiently smally @18#.
To avoid these difficulties, one may resort to an effect
one-component description, by integrating out the degree
freedom of the small spheres for any given configuration
large spheres. This procedure leads to effective interac

FIG. 1. Upper curves are fluid-fluid spinodals fory50.2, D
50.033 as obtained from the four theories described in the t
Mansoori reference (s), PY reference (L), Barboy-Gelbart (1),
and BPGG (*). The lowerthree sets of curves compare the flui
solid binodals calculated by first order perturbation theory in
potential of Eq.~3! ~dashed lines! with MC results@3# ~solid lines!
for the additive case,D50. From top to bottom,y50.2, 0.1, and
0.05 respectively.
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potentials between the large spheres which are determine
the free energy~or grand potential! of the inhomogeneous
fluid of small spheres in the ‘‘external field’’ of the large
particles. Thebasic philosophybehind effective potentials in
complex fluids is that the~considerable! initial effort spent
deriving accurate effective potentials is recouped when t
are used as input into the well developed machinery of liq
state theory@13#. In the case of colloid-polymer mixtures
this approach leads to the Asakura-Oosawa effective pair
tential between large spheres@19#, and for additive HS mix-
tures the effective pair potential has recently been exten
to include excluded volume correlations between sm
spheres@20,3#. The procedure used in these references m
be generalized to derive the following effective pair potent
between large spheres in a nonadditive HS mixture,

bVeff~r !5`; r<s1

bVeff~r !5
23h2

r ~11yeff!

2y3
$h~r !21h2

r @4 h~r !223yh~r !#

1~h2
r !2@10h~r !2212yh~r !#%;

s1<r<s1~11yeff!, ~3!

where the effective size-ratio is

yeff5y1D1Dy, ~4!

while the functionh(r )5(11yeff)2r /s1. The term linear in
h2

r is the purely attractive Derjaguin form of the Asakur
Oosawa potential, with the effective size-ratioyeff , while the
higher order terms describe the partially repulsive effects
the correlation-induced layering of the small spheres aro
the large spheres. As shown in the inset of Fig. 2, increas
D at fixed h2

r deepens the attractive well, while th
correlation-induced repulsive barrier remains roughly
same.

t:

e

FIG. 2. Fluid-fluid spinodals~dashed lines! and fluid-solid bin-
odals ~solid lines! for y50.2, andD50.02, 0.033, 0.05, 0.1, and
0.25 ~from top to bottom!. The long-dashed curve is the fluid-soli
binodal forD50. Inset: effective potentials of Eq.~3! for y50.2,
h2

r 50.3, D50 ~solid line! andD50.05 ~dashed line!.
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The effective interaction forr .s1 is treated as a pertur
bation of the one-component HS reference system, and s
dard first order perturbation theory@13,7# is applied to cal-
culate the free energy and determine the fluid-solid ph
coexistence. The predictions of this effective one-compon
perturbation theory are compared in Fig. 1 to MC data
the additive (D50) case~which in turn compares well with
full two-component MC simulations@3#!; the agreement is
seen to be good, thus lending confidence to the extensio
the theory to the non-additive case, for which no MC d
are available. Interestingly this success is not mirrored
the fluid-fluid transition: the one-component perturbati
theory predicts a critical point at much higher values ofh1
than was found in the simulations, demonstrating that c
must be taken when applying ideas culled from the field
simple fluids to the effective potentials arising from compl
fluids. On the other hand, the two-component perturba
theory embodied in Eq.~2! turns out to be much more accu
rate and has been used throughout to determine the dem
of nonadditive HS’s into two fluid phases.

Results for 0.02<D<0.25 are shown in Fig. 2. Both th
fluid-fluid spinodal and the liquidus line of the freezing tra
sition are seen to shift to lowerh2

r asD increases, so that th
fluid-fluid coexistence curve remains metastable up toD
.0.2, at which stage the critical point becomes stable. T
two-component perturbation theory cannot be trusted for
nificantly larger values ofD, because of its first order natur
On the other hand, nonadditivity is expected to remain rat
small for sterically or electrostatically stabilized colloids,
that the present calculations imply that it may be unlikely
observe fluid-fluid phase coexistence in asymmetric collo
mixtures.

However, the calculations lead to another unexpected
diction. If the phase diagrams in Fig. 2 are rescaled,
choosing the reduced well depth at contactbe5bVeff(s1),
rather thanh2

r , as the thermodynamic variable along they
axis, the fluid-solid liquidus curves for all values ofD fall
practically on top of each other. This ‘‘quasiuniversal’’ b
havior is shown in Fig. 3: the fluid-solid liquidus line scal

FIG. 3. Same as Fig. 2 but with they axis rescaled with respec
to the well-depth at contact of Eq.~3!. Inset: two typical effective
potentials from Eq.~3! for yeff50.2, andyeff50.44; both result in
very similar liquidus lines.
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with well-depth at contact, and is largely independent of
shape or range~characterized byyeff) of the effective pair
potential between the larger spheres. This behavior contr
sharply with the fluid-fluid coexistence curves, which a
very sensitive to the range and shape of the effective po
tial. Note that the fluid-fluid demixing transition become
stable foryeff*0.4, which is comparable to the results
direct simulations of the Asakura-Oosawa model for collo
polymer mixtures@21#.

The possibility of phase-separation in binary hard-sph
mixtures inspired a series of experiments on hard-sphere
colloids@22#. The hard-sphere repulsion is achieved by ste
stabilization, with a repulsive outer brush of co-polymer,
else the colloids are stabilized by repulsive electrostatic
teractions, with enough salt added to obtain a very sh
screening length. Interactions between charge-stabilized
nary colloids are well described by the DLVO potenti
@23,24#. For sterically stabilized colloids, the interactio
between two spheres can be estimated by combining
interaction between two flat brush-covered surfaces, wh
is well described by the Alexander–de Gennes the
@23#, with the Derjaguin approximation, which results i
V22(r 2s22)5yV11(r 2s11), and V12(r 2s12)5@2y/(1
1y)#V11(r 2s11), whereVab(r 2sab) is the interaction po-
tential between the brushes of speciesa and b. The repul-
sive interaction is smaller between smaller particles beca
the brush surface overlap area is smaller as a function
distancer. The three effective hard-sphere diameters can
estimated by the diameter at which the interaction is a f
timeskBT, and then used to determine the nonadditivity. F
both sterically and electrostatically stabilized binary collo
dal mixtures this results in:

D5
l

s12
(0)

lnS 2Ay

11yD 1OS l

s12
(0)D 2

, ~5!

where l is the decay length of the brush@23#, or the Debye
screening length of the DLVO interaction. To first order, t
nonadditivity depends neither on the prefactors in the in

FIG. 4. Fluid-solid binodals fory50.1075,D50 ~solid lines!
andD520.01 ~dash-dotted lines! plotted for absoluteh2 ~not h2

r )
to compare to the liquidus line from Imhof and Dhont@22# for the
samey ~dashed line!.
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actions, nor on exactly how many timeskBT is chosen as the
hard-sphere criterion; only the ‘‘softness’’ of the potent
enters. Since the logarithmic factor in Eq.~5! is negative,
sterically or electrostatically stabilized colloidal mixture
will manifestnegativenonadditivity. For example, the popu
lar model colloids made of polymethylmethylacryla
~PMMA! cores are stabilized by a poly-12-hydroxyste
acid ~PHS! brush, typically 10212 nm wide, with l'3
24 nm @23#, a number confirmed by direct measureme
with a surface-force apparatus@25#. Thus a mixture with the
larger species at 400 nm and the smaller at 40 nm (y50.1)
will have a negative nonadditivity of aboutD520.01; i.e.,
the cross-diameters12 is 1% less than the additive cros
diameters12

(0) .
Figure 4 demonstrates that even a small amount of ne
ce

.

s

e-

ys
l

s
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tive nonadditivity has a relatively large effect on the pha
diagram, raising the liquidus line to higher effective valu
of h2. No fluid-fluid demixing is expected forD,0.

In conclusion then, we have demonstrated that nona
tivity has an important effect on the phase-diagram of asy
metric binary hard-sphere mixtures, affecting both the flu
fluid and the fluid-solid lines. The fluid-solid liquidus line
show a near-universal behavior, and experimental ha
sphere-like colloidal dispersions are expected never to s
rate into two fluid phases.
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